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Abstract. Classification on high-dimensional (i.e. thousands of dimensions)
data typically requires feature selection (FS) as a pre-processing step to reduce
the dimensionality. However, FS is a challenging task even on datasets with hun-
dreds of features. This paper proposes a new particle swarm optimisation (PSO)
based FS approach to classification problems with thousands or tens of thousands
of features. The proposed algorithm is examined and compared with three other
PSO based methods on five high-dimensional problems of varying difficulty. The
results show that the proposed algorithm can successfully select a much smaller
number of features and significantly increase the classification accuracy over us-
ing all features. The proposed algorithm outperforms the other three PSO meth-
ods in terms of both the classification performance and the number of features.
Meanwhile, the proposed algorithm is computationally more efficient than the
other three PSO methods because it selects a smaller number of features and em-
ploys a new fitness evaluation strategy.

Keywords: Particle swarm optimisation, Feature selection, Classification, High-
dimensional data.

1 Introduction

Learning from examples is a successful approach in machine learning and data mining.
Classification is a typical task of learning from training examples to predict the class
labels of unseen examples/instances based on given attributes or features. Many clas-
sification algorithms have been successfully applied to automatically learn classifiers
in a variety of problems, such as image classification, text categorisation and disease
classification. Recently, there are more and more classification datasets with hundreds
or even thousands features, which causes the “curse of dimensionality”. This makes the
classifier learning process become difficult because not all features are relevant to the
class labels and often contain redundant information. Such data typically needs feature
selection (FS) to remove irrelevant and redundant features [9].

Existing FS methods can be classified into wrapper approaches and filter approaches
depending on whether a classification algorithm is used to evaluate the goodness of
the feature subsets [5]. The criteria used in wrapper methods include the classification
performance of a predefined classification algorithm using only the selected feature sub-
sets. On the other hand, filter methods rely on various measures of the general charac-
teristics of the training data, such as distance, information, dependence and consistency
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measures [5] to evaluate the classification capability of the feature subsets. Filter meth-
ods are argued to be more general to different classification algorithms than wrapper
methods. Wrapper approaches usually obtain feature subsets with higher classification
accuracy than filter methods [14] because they directly use the classification perfor-
mance to guide the search. However, wrapper approaches are computationally expen-
sive because each evaluation involves a training process of the classification algorithm.
This work focus mainly on developing a new wrapper FS algorithm.

An optimal feature subset is the smallest subset, which maximises the classification
accuracy. However, finding the optimal feature subset is an NP-hard problem [14]. The
size of the search space grows exponentially with the number of features in the dataset.
Therefore, it is necessary to have an efficient global search technique to tackle FS prob-
lems. Evolutionary Computation (EC) techniques are well-known for their global search
potential. Particle swarm optimisation (PSO) [13,22] is a relatively recent EC technique
that has been successfully applied in many areas such as function optimisation [22] and
feature selection [15,29,27,30,28]. Comparing to other EC techniques, PSO has some
advantages such as simplicity, fewer parameters, lower computational cost, and fast
convergence [8].

In PSO, a swarm of candidate solutions are encoded as particles. During the search-
ing process, each particle remembers the best solution it obtained so far, i.e. the personal
best called pbest. By sharing pbest with neighbours, each particle knows the best solu-
tion that the whole population has found so far, i.e. the global best called gbest. PSO
searches for the optimal solutions based on the information from pbest and gbest. How-
ever, if gbest is near a local optimum, there is a high probability that the swarm will be
stuck in this area, especially in high-dimensional/large-scale problems, e.g. FS on gene
expression data, which has thousands or even more than ten thousands features.

To overcome this limitation, Chuang et al [4] proposed an improved PSO algorithm
(PSO-RG) in which gbest will be restarted whenever it is not improved in a number
of iterations. The proposed PSO achieved better performance than standard PSO. Re-
setting gbest could avoid being stuck in local optima by encouraging the exploration
of the search, but it may limit the algorithm further exploit the surroundings of the al-
ready found good solutions, i.e. gbest. Therefore, a new PSO algorithm is still needed
to better solve high-dimensional feature selection problems on gene expression data.

1.1 Goals

The overall goal of this paper is to develop a new PSO approach to feature selection on
high-dimensional gene expression data to significantly reduce the number of features
and increase the classification performance over using all features. To achieve this goal,
the gbest reset mechanism is used to encourage the global search (exploration) and a
new local search strategy is proposed to facilitate the exploitation of the algorithm to
further improve the performance. The local search is also designed to utilise the char-
acteristics of a simple classification algorithm, k-Nearest-Neighbour (KNN), to avoid
heavy computational cost. The proposed algorithm is examined and compared with
standard PSO, PSO only using the proposed local search (PSO-LS), and PSO-RG only
using the gbest reset mechanism on five gene datasets with more than ten thousands of
features. Specifically, we will investigate:
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– whether the proposed algorithm can reduce the number of features and achieve
similar or better classification performance than using all features,

– whether the proposed algorithm can outperform than standard PSO, PSO-LS and
PSO-RG in terms of the number of features and the classification performance, and

– whether the proposed algorithm can be more efficient than standard PSO, PSO-LS
and PSO-RG.

2 Background

2.1 Particle Swarm Optimisation (PSO)

PSO is an EC technique developed by Kennedy and Eberhart [13], which is inspired by
social behaviours found in birds flocking or fish schooling. In PSO, a swarm consists
of many individuals called particles communicating through iterations to search for
optimal solutions when moving in the search space.

In PSO, each particle has a position and a velocity. The position is a candidate solu-
tion of the problem and is usually an n-dimension vector of numerical values. Velocity
also has the same structure as position, which represents the speed and direction that
the particle should move in the next iteration. In each iteration, the velocity of a parti-
cle is updated based on the personal best (pbest) which is the best position it has been
explored so far and the global best (gbest) which is the best position it has been com-
municated from other particles. Formulae (1) and (2) are used to update the velocity
and position of each particle.

vt+1
id = w ∗ vtid + c1 ∗ r1i ∗ (pid − xt

id) + c2 ∗ r2i ∗ (pgd − xt
id) (1)

xt+1
id = xt

id + vt+1
id (2)

where vtid and xt
id are velocity and position of particle i in dimension d at time t, re-

spectively. pgd and ggd are pbest and gbest positions in dimension d. c1 and c2 are
acceleration constants, and r1 and r2 are random values. w is the inertia weight used
to control the impact of the last velocity to the current velocity. The velocity values are
usually limited by a predefined maximum velocity, vmax to the range [−vmax, vmax].

2.2 Related Works on Feature Selection

Traditional Methods for Feature Selection. Two typical wrapper FS methods are
sequential forward selection (SFS)[25] and sequential backward selection (SBS) [17],
which employs a greedy search method. SFS (SBS) starts with an empty (full) feature
subset, then gradually adds (removes) features until the classification accuracy is not
improved. However, both methods suffer from the so-called “nesting effect” because a
feature which is selected or removed cannot be removed or selected in later stage. As
a compromise between these two approaches, “plus-l-take-away-r” [24] applies SFS
l times and then SBS r times. This strategy can avoid nesting effect, but it is hard to
determine appropriate values for l and r. To avoid this, Pudil et al [21] introduced two
corresponding methods: sequential backward floating selection(SBFS) and sequential
forward floating selection (SFFS). These floating search methods are claimed to be bet-
ter than the static sequential methods, but they are still facing the problem of stagnation
in local optima.
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EC Techniques for Feature Selection. Many EC techniques have been applied to FS
problems such as Genetic algorithms (GAs) [3], Genetic programming (GP) [19], and
Ant colony optimisation (ACO)[7]. Among these, GA is probably the first popular EC
technique that has been applied in FS. Guided by Darwinian evolution principles, GAs
start with a population of candidate solutions, represented as chromosomes, and evolved
better solutions by using genetic operators like crossover, mutation. Many GA based
FS algorithms have been proposed either in filter or wrapper approaches. In the former,
feature subsets are evaluated by using inconsistency rates [16], or fuzzy sets [3]; while
in the latter, different approaches proposed with different classification algorithms for
fitness evaluation, such as ID3 [2], and artificial neural network [20]. GA based hybrid
FS algorithms that combine both filter and wrapper approaches have also been proposed
to improve the performance [10].

Using the same principles, however, instead of evolving bit strings, GP evolves com-
puter programs to generate solutions. Each program is a tree consisting of internal nodes
which are usually arithmetic operators, and leaf nodes which are constants or variables.
When using GP for FS, the variables are chosen from the original features. Selected
features are the ones used as leaf nodes of a GP tree. GP has been used in both filter FS
methods [19] and wrapper FS methods [6]. ACO is another EC technique that stands
in the same umbrella to PSO, swarm intelligence. ACO is inspired by the special com-
munication system using pheromone between real ants about favorable paths to food.
The shortest path will be the one that has most pheromone. When using ACO for FS,
each feature is considered as a node, and paths between nodes represent the choices for
next features. Many ACO algorithms are used for both filter [11,18] and wrapper [12]
feature selection. PSO has recently gained more attention in addressing FS tasks, but
most of the existing PSO based FS algorithms focus mainly on problems with a few
hundreds of features [4,26].

3 Proposed Approach

In this section, a new PSO approach (named PSO-LSRG) is proposed for wrapper fea-
ture selection, where a new local search method is applied to pbest to exploit better
solutions and a reset mechanism is applied to gbest to avoid stagnation in local optima.
These two techniques are combined to see whether they can help PSO balance between
global search and local search to improve the performance.

3.1 Overall Algorithm

PSO-LSRG mainly follows the basic steps of standard PSO. A particle represents a
feature subset, where the dimensionality is the total number of features in the dataset.
Each particle is encoded by a string of floating numbers in [0,1]. A threshold θ is used
to determine whether a feature is selected or not. If the position value is larger than the
threshold, the corresponding feature is selected. Otherwise, the corresponding feature
is not selected. The fitness function of PSO-LSRG is to maximise the classification
accuracy of the selected features, which is shown by Formula (3).
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Randomly initialise position and velocity for each 
particle

Evaluate fitness of each particle

Stopping criteria is met?
If fitness of a particle is better than pbest:

- update the pbest
- Local search for better pbest

If fitness of any pbest is better than gbest,
update the gbest

If fitness of gbest not improved for
m iterations, reset gbest to 0

Return the best solution

Yes

No

Start

Fig. 1. Flowchart of the proposed algorithm

fitness =
number of instances correctly classified

Total number of instances
(3)

Fig. 1 illustrates the overall steps of PSO-LSRG. The two techniques are highlighted
in the figure and will be described in the remaining of this section.

3.2 Reset gbest

gbest plays an important role in leading the search direction of all particles in the
swarm. Resetting gbest if it does not change for a number of iterations can help avoid
premature convergence [4], which is a limitation of PSO. Following [4], the current
gbest is reset to a vector of all “0”s if it does not improve in a few iterations.

3.3 Local Search on pbest

The local search proposed in this algorithm is basically a loop in which a predefined
number of dimensions in the pbest position will be flipped, i.e. a feature from being
“selected” to “not selected” or from being “not selected” to “selected”. To focus the
search on the area surrounding current pbest, flipping is applied to a low percentage of
the total dimensions and 2% is chosen in this work. After flipping, the new solution is
evaluated. If it has better fitness, pbest is updated. The search will stop after a predefined
number of steps.

Fig. (2a) shows an example of the flipping procedure, where pbest is converted to
a binary string using the threshold θ, where “1” in the pbest array means the corre-
sponding feature is selected while “0” means the feature is not selected. Based on the
randomly chosen flip dimensions positions, for example (1, 2, 5, 6, 9), the current pbest
can be flipped to obtain a new pbest position (flipped pbest).
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(1, 2, 5, 6, 9)Flip positions

Current pbest

Instance i

Instance j

0 0 1 0 1 1 1 1 0 0 1 0Flipped pbest

6 2 4 7 9 1 7 25 3 31 6 9

4 5 9 8 13 9 5 17 6 25 7 3

-  +  +  + - 
9 25 64 4 36

Suppose: Distance [i][j] = 325

Distance [i][j] = 325  9 + 25 + 64 + 4 -36 = 373

3 5 8 2 6
(b)

(a) 0 1 2 3 4 5 6 7 8 9 10 ...

0 1 0 0 1 0 0 1 0 1 1 0

Fig. 2. An example of one local search step and re-calculating instances’ distance

Local search usually brings more computation to the algorithm because of more
fitness evaluations. Moreover, each evaluation in a wrapper FS method is usually ex-
pensive because it involves a training process of a classification algorithm. To avoid this
problem, we proposed a new strategy to calculate the distances in KNN to find the near-
est neighbours. This strategy utilises the characteristics of the local search and KNN.
In each local search step, just a small percentage of the total dimensions (2%) will be
changed and 98% of them in the flipped pbest remain the same as in the original pbest.
In standard KNN, to calculate the distance between two instances, their differences (e.g.
the squared difference) in all dimensions need to be calculated, where 98% of the calcu-
lation is repeated because 98% of the dimensions in the flipped pbest is the same as in
the original pbest. Therefore, in the new evaluation strategy, only 2% of the dimensions
are calculated. To achieve this, at the beginning of each local search run, all the cross
distances between instances will be calculated regarding to the features selected in this
given pbest and stored in a square matrix (distance[i][j]). Since this matrix is symmet-
ric, with m instances in the dataset, the algorithm actually calculates m(m+1)

2 times. By
using the distances stored in the matrix, it can speed up the computation of finding the
nearest neighbours of a certain instance by calculating only 2% of the dimensions in
each evaluation.

Fig. (2b) shows an example of distance re-calculation between two illustrated in-
stances: instancei and instancej, where the distance is determined by summing the
squared difference of instancei and instancej in all dimensions. Suppose the distance
between instancei and instancej regarding to the original pbest (distance[i][j]) is
325, the new distance regarding to the flipped pbest can be re-calculated as follows.
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Table 1. Datasets

Data set Number of Features Number of Instances Number of Classes
DLBCL 5469 77 2
9 Tumors 5726 60 9
Prostate Tumor 10509 102 2
11 Tumors 12533 174 11
Lung Cancer 12600 203 5

With 5 chosen flipped dimensions, it only need to subtract from 325 the square differ-
ences of the features’ values that were selected (2 features: 1 and 9) and add those that
were not selected (3 features: 2, 5 and 6). The new distance therefore is 373. Having
all distances calculated, the algorithm can quickly find the new nearest neighbours for a
given instance. As a result, the proposed strategy can save a significant amount of time.

4 Experimental Design

To examine the proposed approach, four different PSO algorithms are used for feature
selection, which are the standard PSO (PSO), PSO with reset gbest only (PSO-RG)
[4], PSO with local search on pbest only (PSO-LS) and PSO with both the reset gbest
strategy and the local search on pbest (PSO-LSRG). Five datasets (Table 1) with a large
number of features are chosen to test the performance of the algorithms, which are gene
expressions profiles download from http://www.gems-system.org.

Since the datasets include a small number of instances, KNN (K=1) with leave one
out cross validation (LOOCV) is used to calculate the classification accuracy, which is
the same as in [4]. The acceleration coefficients are set as are c1 = c2 = 2.0 and iner-
tia weight linearly decreases from 0.9 to 0.4 [23]. The swarm consists of 30 particles.
The maximum number of iterations is 70 and fully connected communication topology
is used here. Maximum velocity is 6.0. The threshold θ = 0.6 is used to determine
the selection of features. Whenever the local search is applied on a given pbest, it will
try 100 times to find better pbest. In each time, 2% of the dimensions will be flipped
to create a new candidate solution. Meanwhile, if gbest is not improved for three it-
erations, it is reset to all 0, which is the same as in [4] for comparison purposes. The
experiment is conducted for 30 independent runs with different random seeds. A statis-
tical significance test, pairwise Student’s T-test, is performed between the classification
performance of different algorithms, where the significance level is set as 0.05.

5 Results and Discussions

Table 2 show the experimental results of the four PSO algorithms: PSO, PSO-RG, PSO-
LS, PSO-LSRG. In this table, “Ave-Size” means the average number of features se-
lected by each method over the 30 runs. “Best”, “Mean” and “StdDev” respectively
are the best, the average and standard deviation of the classification accuracies returned
by 1NN with LOOCV in the 30 independent runs. The “All” row shows the original
number of features and its classification accuracy when using all features. The highest
average accuracies and the smallest size of all methods in each dataset are the bold ones.
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Table 2. Experimental Results

The more “-”, the better PSO-RG, PSO-LS or PSOLSRG.
Dataset Method Ave-Size Best Mean±StdDev TRG TLS TLSRG

DLBCL

All 5469 87.01 – – –
PSO 2625.70 98.70 97.70±1.01 – – –
PSO-RG 1766.53 98.70 98.44±0.53 = =
PSO-LS 2094.70 98.70 98.40±0.56 –
PSO-LSRG 1690.13 98.70 98.66±0.24

9 Tumors

All 5726 53.33 – – –
PSO 2808.20 78.33 72.72±2.78 – – –
PSO-RG 2720.63 78.33 74.67±2.68 – –
PSO-LS 2139.10 86.67 80.72±2.13 =
PSO-LSRG 2114.57 86.67 81.39±1.76

Prostate Tumor

All 10509 76.47 – – –
PSO 5143.20 91.18 88.53±1.77 – – –
PSO-RG 2353.17 98.04 92.42±2.74 = –
PSO-LS 3825.17 95.10 92.09±1.06 –
PSO-LSRG 2148.47 98.04 94.94±1.18

11 Tumors

All 12533 84.48 – – –
PSO 6138.33 92.53 90.92±0.90 – – –
PSO-RG 5623.87 95.40 91.51±1.08 – –
PSO-LS 4671.07 95.40 93.87±1.03 =
PSO-LSRG 4293.63 95.40 93.79±0.70

Lung Cancer

All 12600 90.15 – – –
PSO 6144.03 96.55 95.78±0.50 – – –
PSO-RG 4792.83 97.54 96.40±0.61 – –
PSO-LS 4641.17 97.54 97.03±0.50 =
PSO-LSRG 3426.43 98.03 97.19±0.43

The “TRG” column shows the results of T-tests between PSO-RG and other methods,
where “+” (“–”) means the corresponding method achieves significantly better (worse)
classification performance than PSO-RG. “=” means they are similar. Similarly, “TLS”
or “TLSRG” are the results of T-tests comparing the classification performance achieved
by other methods and PSO-LS or PSO-LSRG, respectively.

5.1 The Standard PSO

As shown in Table 2, the standard PSO obtained feature subsets with higher classifica-
tion performance and smaller size than all features on all the five datasets. Using feature
subsets evolved by PSO, the 1NN classifier increases its average classification accuracy
about 20% on the 9 Tumor dataset, 10% on the DLBCL and the Prostate Tumors, and
5% on the other two datasets. The number of features selected by PSO is about 50%
of the original number of features on all the five datasets. The results show that PSO
is a suitable tool for FS problems. For the rest of this work, we will consider PSO as a
baseline to compare with other methods.

5.2 Effect of Reset gbest Technique (PSO-RG)

From all the “–”symbols in TRG column of Table 2, we can state that the classification
accuracies of feature subsets selected by PSO-RG is significantly better than using all
features and those of PSO on all the five datasets. Furthermore, the subset size of the
PSO-RG solutions is also smaller than that of PSO. It is about half on two datasets,
which are the 9 Tumor and the 11 Tumor datasets, and one-third on the DLBCL and



Improved PSO for Feature Selection on High-Dimensional Datasets 511

0.
6

0.
7

0.
8

0.
9

1.
0

DLBCL

Iterations

Fi
tn

es
s

0 35 70

0.
6

0.
7

0.
8

0.
9

1.
0

9T

Iterations

Fi
tn

es
s

0 35 70

0.
6

0.
7

0.
8

0.
9

1.
0

Pros

Iterations
Fi

tn
es

s
0 35 70

0.
6

0.
7

0.
8

0.
9

1.
0

11T

Iterations

Fi
tn

es
s

0 35 70

0.
6

0.
7

0.
8

0.
9

1.
0

Lung

Iterations

Fi
tn

es
s

0 35 70

PSO PSO−LS

Fig. 3. Average gbest fitness of PSO and PSO-LS on five datasets

Lung Cancer datasets. On the Prostate Tumor dataset, this number even further reduces,
which is less than a quarter of the original feature set size. This is possibly because
setting gbest to 0 attracts all other particles moving toward this direction, resulting to
smaller subsets. The results indicate that the reset gbest technique is useful in directing
particles to other promising areas when they seems to get stuck in a local optimum.

5.3 Effect of Local Search on pbest (PSO-LS)

According to the results of “PSO-LS” in Table 2, the feature subsets evolved by PSO
with local search on pbest can achieve significantly higher classification performance
than using all features and standard PSO. PSO-LS obtained significantly better classi-
fication performance than PSO-RG on three datasets and they are similar on the other
two datasets, which are the DLBCL and the Prostate Tumor. The overall results show
that the proposed local search technique on pbest gives particles more chances to reach
better positions in their local areas.

To have a better view of the local search effect on pbest, it is worth to observe how
gbest changes during the searching process. Fig. 3 contains five graphs for the five
datasets, where each graph shows the average fitness value of gbest over the 30 runs
in each iteration. Each graph has a dashed line and a solid line representing PSO and
PSO-LS, respectively. The figure shows that just after the first iteration, the average
value of gbest of PSO-LS shows a significant improvement comparing to the standard
PSO algorithm on all the five datasets. This indicates that the local search helps the pop-
ulation reach better solution regions and obtain feature subsets with higher classification
performance.
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Table 3. Average computation time (in minutes)

PSO PSO-RG PSO-LS PSO-LSRG
DLBCL 34.81 23.37 28.23 18.99
9 Tumors 23.64 19.79 18.85 17.40
Prostate Tumor 160.13 99.85 134.50 83.77
11 Tumors 452.14 361.68 352.26 310.06
Lung Cancer 558.17 435.01 446.47 363.59

5.4 Combination of Local Search and Reset gbest in PSO (PSO-LSRG)

As can be seen from Table 2, PSO-LSRG selected the smallest number of features on
all the five datasets, which is only around 20% of the original features on the Prostate
Tumor dataset. Meanwhile, PSO-LSRG achieved the highest classification accuracies
on four of the five datasets. The results of the significance T-tests in TLSRG show that
PSO-LSRG outperformed PSO-RG and PSO-LS on four and three of the five datasets,
respectively. For the remaining datasets, they achieved similar results.

From Table 2, we can see an interesting pattern shown in the bold pair of T-test
values in TLS and TLSRG on each dataset. The pattern of “– =” shows that for those
datasets where PSO-LS outperformed PSO-RG, which are the 9 Tumors, 11 Tumors
and Lung Cancer datasets, PSO-LSRG achieved similar classification performance to
PSO-LS. On the other hand, the “= –” shows that for those datasets where PSO-LS
only evolved similar results to PSO-RG, which are the DLBCL and Prostate Tumors,
PSO-LSRG made an improvement. From this observation, we can conclude that the
combination of reset gbest and local search on pbest can overcome the limitations
of the two techniques and help PSO balance its exploration and exploitation abilities.
Therefore, the feature subsets selected by PSO-LSRG that combines two techniques
generally have a smaller size and equal or better classification performance than the
case where only one technique is applied.

5.5 Computational Time

Table 3 shows the average CPU time used by each method in the 30 independent runs
on the five datasets, where the numbers are expressed in minutes.

From Table 3, it can be seen that PSO-RG consumes less time than the standard PSO.
Since all these PSO methods have the same settings in term of the number of particles
and iterations, they have the same number of evaluations in one run. Therefore, the
factor makes their computation time different is that the evolved feature subsets in the
former are smaller than the latter. This again confirms the big influence of the feature
subset size on the computation time in wrapper FS approaches. As a consequence, in
PSO-LS and PSO-LSRG, although the local search part adds more running time to the
standard PSO in every update of pbest, it does not make the total computation time of
one run longer. By contrast, by reaching solutions with smaller subsets, it can signifi-
cantly reduce the total computation time. Another important factor is the computation
time saved by using the cross distance matrix of the instances to evaluate a new pbest,
which was explained in Section 3.3. This new strategy successfully reduces the running
time of KNN classifier. The quick evaluation time and selecting smaller subsets make
the computation time of PSO-LSRG be the shortest in all the five different datasets.
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5.6 Further Discussions

Note that in the experimental design, this paper uses the re-substitution estimator to
evaluate the performance of the feature subsets, which is the same as in [4] and many
other existing papers. The re-substitution estimator, in other words, means the whole
dataset is used during the evolutionary feature selection process. There is no separated
unseen data to test the generality of the selected features. There is a feature selection
bias here, so we cannot claim that the selected features can be used for future unseen
data for classification.

According to Ambroise et al [1], the feature selection bias effect can be reduced
by using cross validation or bootstrap estimators in which a fraction of the original
dataset are held out for testing the performance of the selected features. We will further
investigate this in our future work.

6 Conclusions and Future Work

The goal of this paper was to develop a new PSO approach to feature selection on high-
dimensional gene datasets with thousands of features. The goal has been successfully
achieved by developing a new efficient local search on pbest and applying a reset gbest
mechanism in PSO for feature selection, where KNN with LOOCV was used to eval-
uate the classification performance. The performance of the new PSO approach with
both local search and reset gbest (PSO-LSRG) is examined and compared with stan-
dard PSO, PSO with the proposed local search only (PSO-LS), and PSO with the reset
gbest mechanism only (PSO-RG). The experiments on five gene datasets of varying
difficulty show that the feature subsets returned by PSO-LS are smaller and achieved
better classification performance than those of PSO, and better or at least similar to
those of PSO-RG. The change of gbest during searching processes also indicates that
the proposed local search on pbest is an effective strategy for PSO to improve its search
ability. The results of PSO-RG show that the reset gbest technique helped particles
divert their search to other promising regions when they seem to get stuck in a near
local optima. However, the gbest reset mechanism might also prevent particles to better
exploit their findings. Meanwhile, applying local search on pbest gives particles more
chances to obtain better solutions. Therefore, the combination of these two techniques
in PSO-LSRG further increased the performance. The results confirm that PSO-LSRG
could overcome their limitations to achieve even better results than both PSO-LS and
PSO-RG in terms of the classification performance and the number of features. Mean-
while, the proposed strategy for the fitness evaluation in local search has successfully
saved the computation time for KNN, enabling PSO-LSRG being more efficient than
the other three methods.

The proposed algorithm significantly reduced the size of the feature set, but it can
be seen that the numbers are still large. Further reducing the number of features is
still an important and challenging task. In future work, we intend to develop a new
EC approach to further reduce the number of features and improve the classification
performance without increasing the computational cost.
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